通过与 Jira 对比,让您更全面了解 PingCode

  • 首页
  • 需求与产品管理
  • 项目管理
  • 测试与缺陷管理
  • 知识管理
  • 效能度量
        • 更多产品

          客户为中心的产品管理工具

          专业的软件研发项目管理工具

          简单易用的团队知识库管理

          可量化的研发效能度量工具

          测试用例维护与计划执行

          以团队为中心的协作沟通

          研发工作流自动化工具

          账号认证与安全管理工具

          Why PingCode
          为什么选择 PingCode ?

          6000+企业信赖之选,为研发团队降本增效

        • 行业解决方案
          先进制造(即将上线)
        • 解决方案1
        • 解决方案2
  • Jira替代方案

25人以下免费

目录

数据挖掘和机器学习到底有什么区别

数据挖掘是一种决策支持过程,它主要基于人工智能、模式识别、数据库、可视化技术等,高度自动化地分析企业的数据;机器学习是通过输入海量训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测。

一、数据挖掘的定义

数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。

数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。

二、数据挖掘工作流程

1.确定业务对象

清晰地定义出业务问题,认清数据挖掘的目的是数据挖掘的重要一步.挖掘的最后结构是不可预测的,但要探索的问题应是有预见的,为了数据挖掘而数据挖掘则带有盲目性,是不会成功的。

2.数据准备

(1)数据的选择

搜索所有与业务对象有关的内部和外部数据信息,并从中选择出适用于数据挖掘应用的数据.

(2)数据的预处理

研究数据的质量,为进一步的分析作准备.并确定将要进行的挖掘操作的类型。

(3)数据的转换

将数据转换成一个分析模型.这个分析模型是针对挖掘算法建立的.建立一个真正适合挖掘算法的分析模型是数据挖掘成功的关键。

3.数据挖掘

对所得到的经过转换的数据进行挖掘.除了完善从选择合适的挖掘算法外,其余一切工作都能自动地完成。

4.结果分析

解释并评估结果.其使用的分析方法一般应作数据挖掘操作而定,通常会用到可视化技术。

5.知识的同化

将分析所得到的知识集成到业务信息系统的组织结构中去。

二、什么是机器学习

机器学习领域知名学者Tom M.Mitchell曾给机器学习做如下定义:如果计算机程序针对某类任务T的性能(用P来衡量)能通过经验E来自我改善,则认为关于T和P,程序对E进行了学习。机器学习的核心是“使用算法解析数据,从中学习,然后对新数据做出决定或预测”。

也就是说计算机利用以获取的数据得出某一模型,然后利用此模型进行预测的一种方法,这个过程跟人的学习过程有些类似,比如人获取一定的经验,可以对新问题进行预测。

机器学习的概念就是通过输入海量训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测。

三、机器学习的分类

根据是否在人类的监督下进行学习这个问题,机器学习任务区分如下:

1.监督学习:监督学习算法依赖具有标签的训练数据来建立数学模型。例如,如果任务是鉴定图片是否包含某种实体,那么训练集的图片中就应该同时存在包含与不包含该实体的图片,同时,每张图片需标注是否包含该实体的标签。根据标签的数值特征(连续、离散),监督学习又可以分为分类问题与回归问题。

2.半监督学习:在某些情况下,并不是所有的输入数据集都被有效标注了,即训练集中包含已标注的样本和未标注的样本。实际上未标注样本与已标注样本拥有同样的分布,在训练时若能利用这一点,则会很有帮助。

3.无监督学习:无监督学习算法完全利用不带标签的训练数据去训练一个模型。无监督学习用于探索数据的分布,例如将点聚类等。无监督学习可用于发现数据的潜在模式,并将数据按组归类,还可用于特征学习和数据降维等。

4.强化学习:在动态环境中以正或负强化的形式给出反馈,并用于自动驾驶车辆,或者学习与人类对手玩游戏等。

以上就是关于数据挖掘和机器学习的知识希望对大家有帮助。

相关文章