python的内存管理机制有三种:1.引用计数机制;2.垃圾回收机制;3.内存池机制。其中,python内部使用引用计数,来保持追踪内存中的对象,Python内部记录了对象有多少个引用,即引用计数。
一、python的内存管理机制
1.引用计数机制
python内部使用引用计数,来保持追踪内存中的对象,Python内部记录了对象有多少个引用,即引用计数,当对象被创建时就创建了一个引用计数,当对象不再需要时,这个对象的引用计数为0时,它被垃圾回收。
特性
当给一个对象分配一个新名称或者将一个对象放入一个容器(列表、元组或字典)时,该对象的引用计数都会增加。
当使用del对对象显示销毁或者引用超出作用于或者被重新赋值时,该对象的引用计数就会减少。
可以使用sys.getrefcount()函数来获取对象的当前引用计数。多数情况下,引用计数要比我们猜测的大的多。对于不可变数据(数字和字符串),解释器会在程序的不同部分共享内存,以便节约内存。
2.垃圾回收机制
当内存中有不再使用的部分时,垃圾收集器就会把他们清理掉。它会去检查那些引用计数为0的对象,然后清除其在内存的空间。当然除了引用计数为0的会被清除,还有一种情况也会被垃圾收集器清掉:当两个对象相互引用时,他们本身其他的引用已经为0了。
垃圾回收机制还有一个循环垃圾回收器, 确保释放循环引用对象(a引用b, b引用a, 导致其引用计数永远不为0)。
3.内存池机制
在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制。这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响Python的执行效率。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
内存池概念
内存池的概念就是预先在内存中申请一定数量的,大小相等的内存块留作备用,当有新的内存需求时,就先从内存池中分配内存给这个需求,不够了之后再申请新的内存。这样做最显著的优势就是能够减少内存碎片,提升效率。内存池的实现方式有很多,性能和适用范围也不一样。
特性
Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。
Pymalloc机制。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的 malloc。
对于Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。
延伸阅读:
二、Python 参数传递
Python 的参数传递是赋值传递(pass by assignment),或者叫作对象的引用传递(pass by object reference)。在进行参数传递时,新变量与原变量指向相同的对象。下面先来看一下Python中可变和不可变数据类型赋值的例子。
1. 不可变数据类型
整型(int)赋值:
a = 1
print(id(a))
b = a
print(id(b))
a = a + 1
print(id(a))
c = 1
print(id(c))
执行结果:
其中id()函数用于返回对象的内存地址。
可以看到b,c都指向了相同的对象,而a = a + 1 并不是让 a 的值增加 1,而是重新创建并指向了新的值为 2 的对象。最终结果就是a指向了2这个新的对象,b指向1,值不变。
2. 可变数据类型
以列表(list)为例:
l1 = [1, 2, 3]
print(id(l1)) #
l2 = l1
print(id(l2))
l1.append(4)
print(id(l1))
print(l1)
print(l2)
执行结果:
1933202772296
1933202772296
1933202772296
[1, 2, 3, 4]
[1, 2, 3, 4]
l1 和 l2 指向相同的对象,由于列表是可变(mutable)数据类型,所以 l1.append(4)不会创建新的列表,仍然指向相同的对象。 由于l1 和 l2 指向相同的对象,所以列表变化也会导致l2的值变化。
可变对象(列表,字典,集合等)的改变,会影响所有指向该对象的变量。对于不可变对象(字符串、整型、元组等),所有指向该对象的变量的值总是一样的,也不会改变。