通过与 Jira 对比,让您更全面了解 PingCode

  • 首页
  • 需求与产品管理
  • 项目管理
  • 测试与缺陷管理
  • 知识管理
  • 效能度量
        • 更多产品

          客户为中心的产品管理工具

          专业的软件研发项目管理工具

          简单易用的团队知识库管理

          可量化的研发效能度量工具

          测试用例维护与计划执行

          以团队为中心的协作沟通

          研发工作流自动化工具

          账号认证与安全管理工具

          Why PingCode
          为什么选择 PingCode ?

          6000+企业信赖之选,为研发团队降本增效

        • 行业解决方案
          先进制造(即将上线)
        • 解决方案1
        • 解决方案2
  • Jira替代方案

25人以下免费

目录

Python编程中,如何使用多进程完成多任务进程有哪些注意点

Python编程中,使用多进程完成多任务的方法:使用multiprocessing模块。进程的注意点有:1、进程之间不共享全局变量;2、主进程会等待所有的子进程执行结束再结束。进程之间不共享全局变量是指操作的不是同一个进程里面的全局变量。

一、Python编程中,使用多进程完成多任务的方法

Python提供了multiprocessing模块,可以用于在单个计算机上创建多个进程,从而实现多任务处理。下面是一个简单的例子,展示了如何使用multiprocessing模块创建多进程来完成多任务。

代码:

import multiprocessing
import time

# 跳舞任务
def dance():
    for i in range(5):
        print("跳舞中...")
        time.sleep(0.2)

# 唱歌任务
def sing():
    for i in range(5):
        print("唱歌中...")
        time.sleep(0.2)

if __name__ == '__main__':
    # 创建跳舞的子进程
    # group: 表示进程组,目前只能使用None
    # target: 表示执行的目标任务名(函数名、方法名)
    # name: 进程名称, 默认是Process-1, .....
    dance_process = multiprocessing.Process(target=dance, name="myprocess1")
    sing_process = multiprocessing.Process(target=sing)
    # 启动子进程执行对应的任务
    dance_process.start()
    sing_process.start()

执行结果:

唱歌中...
跳舞中...
唱歌中...
跳舞中...
唱歌中...
跳舞中...
唱歌中...
跳舞中...
唱歌中...
跳舞中...

二、进程有哪些注意点

1、进程之间不共享全局变量

代码:

import multiprocessing
import time
# 定义全局变量
g_list = list()
# 添加数据的任务
def add_data():
    for i in range(5):
        g_list.append(i)
        print("add:", i)
        time.sleep(0.2)

    # 代码执行到此,说明数据添加完成
    print("add_data:", g_list)

def read_data():
    print("read_data", g_list)

if __name__ == '__main__':
    # 创建添加数据的子进程
    add_data_process = multiprocessing.Process(target=add_data)
    # 创建读取数据的子进程
    read_data_process = multiprocessing.Process(target=read_data)
    # 启动子进程执行对应的任务
    add_data_process.start()
    # 主进程等待添加数据的子进程执行完成以后程序再继续往下执行,读取数据
    add_data_process.join()
    read_data_process.start()

    print("main:", g_list)

    # 总结: 多进程之间不共享全局变量

执行结果:

add: 0
add: 1
add: 2
add: 3
add: 4
add_data: [0, 1, 2, 3, 4]
main: []
read_data []

创建子进程会对主进程资源进行拷贝,也就是说子进程是主进程的一个副本,好比是一对双胞胎,之所以进程之间不共享全局变量,是因为操作的不是同一个进程里面的全局变量,只不过不同进程里面的全局变量名字相同而已。

2、主进程会等待所有的子进程执行结束再结束

假如我们现在创建一个子进程,这个子进程执行完大概需要2秒钟,现在让主进程执行0.5秒钟就退出程序,查看一下执行结果,示例代码如下:

import multiprocessing
import time
# 定义进程所需要执行的任务
def task():
    for i in range(10):
        print("任务执行中...")
        time.sleep(0.2)

if __name__ == '__main__':
    # 创建子进程
    sub_process = multiprocessing.Process(target=task)
    sub_process.start()

    # 主进程延时0.5秒钟
    time.sleep(0.5)
    print("over")
    exit()
    # 总结:主进程会等待所有的子进程执行完成以后程序再退出

执行结果:

任务执行中...
任务执行中...
任务执行中...
over
任务执行中...
任务执行中...
任务执行中...
任务执行中...
任务执行中...
任务执行中...
任务执行中...

说明:通过上面代码的执行结果,我们可以得知:主进程会等待所有的子进程执行结束再结束。

假如我们就让主进程执行0.5秒钟,子进程就销毁不再执行,那怎么办呢?我们可以设置守护主进程或者在主进程退出之前让子进程销毁:

  • 守护主进程:守护主进程就是主进程退出子进程销毁不再执行
  • 子进程销毁:子进程执行结束

保证主进程正常退出的示例代码:

import multiprocessing
import time
# 定义进程所需要执行的任务
def task():
    for i in range(10):
        print("任务执行中...")
        time.sleep(0.2)

if __name__ == '__main__':
    # 创建子进程
    sub_process = multiprocessing.Process(target=task)
    # 设置守护主进程,主进程退出子进程直接销毁,子进程的生命周期依赖与主进程
    # sub_process.daemon = True
    sub_process.start()

    time.sleep(0.5)
    print("over")
    # 让子进程销毁
    sub_process.terminate()
    exit()

    # 总结:主进程会等待所有的子进程执行完成以后程序再退出
    # 如果想要主进程退出子进程销毁,可以设置守护主进程或者在主进程退出之前让子进程销毁

执行结果:

任务执行中...
任务执行中...
任务执行中...
over

三、Python多线程的通信

进程是系统独立调度核分配系统资源(CPU、内存)的基本单位,进程之间是相互独立的,每启动一个新的进程相当于把数据进行了一次克隆,子进程里的数据修改无法影响到主进程中的数据,不同子进程之间的数据也不能共享,这是多进程在使用中与多线程最明显的区别。但是难道Python多进程中间难道就是孤立的吗?当然不是,python也提供了多种方法实现了多进程中间的通信和数据共享(可以修改一份数据)。

1、进程对列Queue

Queue在多线程中也说到过,在生成者消费者模式中使用,是线程安全的,是生产者和消费者中间的数据管道,那在python多进程中,它其实就是进程之间的数据管道,实现进程通信。

from multiprocessing import Process,Queue


def fun1(q,i):
    print('子进程%s 开始put数据' %i)
    q.put('我是%s 通过Queue通信' %i)

if __name__ == '__main__':
    q = Queue()

    process_list = []
    for i in range(3):
        p = Process(target=fun1,args=(q,i,))  #注意args里面要把q对象传给我们要执行的方法,这样子进程才能和主进程用Queue来通信
        p.start()
        process_list.append(p)

    for i in process_list:
        p.join()

    print('主进程获取Queue数据')
    print(q.get())
    print(q.get())
    print(q.get())
    print('结束测试')

结果:

子进程0 开始put数据
子进程1 开始put数据
子进程2 开始put数据
主进程获取Queue数据
我是0 通过Queue通信
我是1 通过Queue通信
我是2 通过Queue通信
结束测试

Process finished with exit code 0

上面的代码结果可以看到我们主进程中可以通过Queue获取子进程中put的数据,实现进程间的通信。

2、管道Pipe

管道Pipe和Queue的作用大致差不多,也是实现进程间的通信。

from multiprocessing import Process, Pipe
def fun1(conn):
    print('子进程发送消息:')
    conn.send('你好主进程')
    print('子进程接受消息:')
    print(conn.recv())
    conn.close()

if __name__ == '__main__':
    conn1, conn2 = Pipe() #关键点,pipe实例化生成一个双向管
    p = Process(target=fun1, args=(conn2,)) #conn2传给子进程
    p.start()
    print('主进程接受消息:')
    print(conn1.recv())
    print('主进程发送消息:')
    conn1.send("你好子进程")
    p.join()
    print('结束测试')

结果:

主进程接受消息:
子进程发送消息:
子进程接受消息:
你好主进程
主进程发送消息:
你好子进程
结束测试

Process finished with exit code 0

上面可以看到主进程和子进程可以相互发送消息。

3、Managers

Queue和Pipe只是实现了数据交互,并没实现数据共享,即一个进程去更改另一个进程的数据。那么就要用到Managers。

from multiprocessing import Process, Manager

def fun1(dic,lis,index):

    dic[index] = 'a'
    dic['2'] = 'b'    
    lis.append(index)    #[0,1,2,3,4,0,1,2,3,4,5,6,7,8,9]
    #print(l)

if __name__ == '__main__':
    with Manager() as manager:
        dic = manager.dict()#注意字典的声明方式,不能直接通过{}来定义
        l = manager.list(range(5))#[0,1,2,3,4]

        process_list = []
        for i in range(10):
            p = Process(target=fun1, args=(dic,l,i))
            p.start()
            process_list.append(p)

        for res in process_list:
            res.join()
        print(dic)
        print(l)

结果:

{0: 'a', '2': 'b', 3: 'a', 1: 'a', 2: 'a', 4: 'a', 5: 'a', 7: 'a', 6: 'a', 8: 'a', 9: 'a'}
[0, 1, 2, 3, 4, 0, 3, 1, 2, 4, 5, 7, 6, 8, 9]

可以看到主进程定义了一个字典和一个列表,在子进程中,可以添加和修改字典的内容,在列表中插入新的数据,实现进程间的数据共享,即可以共同修改同一份数据。

延伸阅读1:Python协程简介

协程,又称微线程,纤程,英文名Coroutine。协程的作用是在执行函数A时可以随时中断去执行函数B,然后中断函数B继续执行函数A(可以自由切换)。但这一过程并不是函数调用,这一整个过程看似像多线程,然而协程只有一个线程执行。

相关文章