高性能计算(HPC,High-Performance Computing)是计算机科学的一个分支,研究集群架构、并行算法和相关软件基础;分布式系统是由一组通过网络进行通信、为了完成共同的任务而协调工作的计算机节点组成的系统。
一、高性能计算与分布式数据库的区别
高性能计算
高性能计算(HPC,High-Performance Computing)是计算机科学的一个分支,研究集群架构、并行算法和相关软件基础,通过分布式计算实现单台计算机无法达到的运算速度。
高性能计算主要应用领域有:
- 大规模科学问题,通过有限元方法应用解决如力学、气动、热力学等工程问题,以及天气预报、地形分析和生物制药等;
- 存储和处理海量数据,数据挖掘、图象处理和基因测序等;
- 提供高响应效率的并行处理系统等;
高性能集群就是采用集群技术来实现高性能计算,在有限的时间范围内对问题求解。
分布式数据库
分布式系统是由一组通过网络进行通信、为了完成共同的任务而协调工作的计算机节点组成的系统。分布式系统的出现是为了用廉价的、普通的机器完成单个计算机无法完成的计算、存储任务。其目的是利用更多的机器,处理更多的数据。
分布式数据库系统是在冀中是数据库系统的基础上发展来的,比较分布式数据库系统与集中式数据库系统,可以发现分布是数据库系统具有下列优点:
(1)更适合分布式的管理与控制。分布式数据库系统的结构更适合具有地理分布特性的组织或机构使用,允许分布在不同区域、不同级别的各个部门对其自身的数据实行局部控制。例如:实现全局数据在本地录入、查询、维护,这时由于计算机资源靠近用户,可以降低通信代价,提高响应速度,而涉及其他场地数据库中的数据只是少量的,从而可以大大减少网络上的信息传输量;同时,局部数据的安全性也可以做得更好。
(2)具有灵活的体系结构。集中式数据库系统强调的是集中式控制,物理数据库是存放在一个场地上的,由一个DBMS集中管理。多个用户只可以通过近程或远程终端在多用户操作系统支持下运行该DBMS来共享集中是数据库中的数据。而分布式数据库系统的场地局部DBMS的自治性,使得大部分的局部事务管理和控制都能就地解决,只有在涉及其他场地的数据时才需要通过网络作为全局事务来管理。分布式DBMS可以设计成具有不同程度的自治性,从具有充分的场地自治到几乎是完全集中式的控制。
(3)系统经济,可靠性高,可用性好。与一个大型计算机支持一个大型的冀中是数据库在加一些进程和远程终端相比,由超级微型计算机或超级小型计算机支持的分布式数据库系统往往具有更高的性价比和实施灵活性。分布式系统比集中式系统具有更高的可靠性和更好的可用性。如由于数据分布在多个场地并有许多复制数据,在个别场地或个别通信链路发生故障时,不致于导致整个系统的崩溃,而且系统的局部故障不会引起全局失控。
(4)在一定条件下响应速度加快。如果存取的数据在本地数据库中,那末就可以由用户所在的计算机来执行,速度就快。
(5)可扩展性好,易于集成现有系统,也易于扩充。
对于一个企业或组织,可以采用分布式数据库技术在以建立的若干数据库的基础上开发全局应用,对原有的局部数据库系统作某些改动,形成一个分布式系统。这比重建一个大型数据库系统要简单,既省时间,又省财力、物力。也可以通过增加场地数的办法,迅速扩充已有的分布式数据库系统。
延伸阅读:
二、NoSQL数据库在大数据时代的优势
NoSQL数据库在大数据时代有着巨大的优势。NoSQL数据库一直以性能、可扩展性、灵活的模式和分析能力聚焦着人们的注意力。尽管关系型数据库对于某些用例来说仍是一个不错的选择,就像结构数据和要求ACID事务的应用。
1、存储的数据实质上是半结构化或者松散的;
2、要求一定的等级的性能和扩展性;
3、存取该数据的应用与最终的一致性相吻合;
4、灵活的模式;
5、无共享架构;
6、分片作为数据存储模型的一部分;
7、异步复制;
8、使用BASE替代ACID事务。