通过与 Jira 对比,让您更全面了解 PingCode

  • 首页
  • 需求与产品管理
  • 项目管理
  • 测试与缺陷管理
  • 知识管理
  • 效能度量
        • 更多产品

          客户为中心的产品管理工具

          专业的软件研发项目管理工具

          简单易用的团队知识库管理

          可量化的研发效能度量工具

          测试用例维护与计划执行

          以团队为中心的协作沟通

          研发工作流自动化工具

          账号认证与安全管理工具

          Why PingCode
          为什么选择 PingCode ?

          6000+企业信赖之选,为研发团队降本增效

        • 行业解决方案
          先进制造(即将上线)
        • 解决方案1
        • 解决方案2
  • Jira替代方案

25人以下免费

目录

贝叶斯深度学习是什么,和传统神经网络有何不同

贝叶斯深度学习与传统神经网络的区别主要体现在:1.学习方法不同;2.不确定性处理不同;3.过拟合防控不同;4.预测结果解释性不同;5.计算复杂性不同。总的来说,传统神经网络更注重模型的拟合能力和预测精度,而贝叶斯深度学习更注重模型的不确定性量化和预测结果的可解释性。

1.学习方法不同

传统神经网络采用频率学派的观点,即通过最小化损失函数来优化模型参数。而贝叶斯深度学习则基于贝叶斯理论,将模型参数视为随机变量,通过计算后验概率来更新模型参数。

2.不确定性处理不同

传统神经网络通常无法直接量化模型的不确定性。而贝叶斯深度学习则可以量化模型的不确定性,例如通过后验概率的标准差来表示预测结果的不确定性。

3.过拟合防控不同

传统神经网络主要通过正则化技术(如L1、L2正则化、Dropout等)来防止过拟合。而贝叶斯深度学习则通过引入模型复杂度的先验知识,利用贝叶斯理论的边缘化效应自然地实现了过拟合的防控。

4.预测结果解释性不同

传统神经网络的预测结果通常难以解释。而贝叶斯深度学习的预测结果可以给出后验概率分布,从而提供了预测结果的不确定性,提高了预测结果的解释性。

5.计算复杂性不同

传统神经网络的训练通常需要进行大量的反向传播计算,而贝叶斯深度学习由于需要计算后验概率,其计算复杂性通常更高。

延伸阅读

贝叶斯神经网络和MC Dropout

贝叶斯神经网络是一种具有贝叶斯属性的神经网络。相比于传统神经网络,贝叶斯神经网络可以对模型的不确定性进行量化。MC Dropout是一种简单有效的方法,可以使传统神经网络具有类似贝叶斯神经网络的属性,即可以量化预测的不确定性。这使得我们在使用传统神经网络的同时,还能得到模型不确定性的估计。

相关文章