选择红黑树作为底层实现红黑树是一种类平衡树, 但它不是高度的平衡树, 但平衡的效果已经很好了。STL map , nginx,linux 虚拟内存管理,他们都有红黑树的应用。
一、为什么STL和linux都使用红黑树作为平衡树的实现
选择红黑树作为底层实现红黑树是一种类平衡树, 但它不是高度的平衡树, 但平衡的效果已经很好了。STL map , nginx,linux 虚拟内存管理,他们都有红黑树的应用。
1. 如果插入一个node引起了树的不平衡,AVL和RB-Tree都是非常多只需要2次旋转操作,即两者都是O(1);但是在删除node引起树的不平衡时,最坏情况下,AVL需要维护从被删node到root这条路径上所有node的平衡性,因此需要旋转的量级O(logN),而RB-Tree非常多只需3次旋转,只需要O(1)的复杂度。
2. 其次,AVL的结构相较RB-Tree来说更为平衡,在插入和删除node更容易引起Tree的unbalance,因此在大量数据需要插入或者删除时,AVL需要rebalance的频率会更高。因此,RB-Tree在需要大量插入和删除node的场景下,效率更高。自然,由于AVL高度平衡,因此AVL的search效率更高。
3. map的实现只是折衷了两者在search、insert以及delete下的效率。总体来说,RB-tree的统计性能是高于AVL的。
延伸阅读
二、AVL树(平衡二叉树)
AVL树是带有平衡条件的二叉查找树,一般是用平衡因子差值判断是否平衡并通过旋转来实现平衡,左右子树的高度差不超过1,和红黑树相比,AVL树是严格的平衡二叉树,平衡条件必须满足(所有节点的左右子树高度差的绝对值不超过1。不管我们是执行插入还是删除操作,只要不满足上面的条件,就要通过旋转来保持平衡,而旋转是非常耗时的,由此我们可以知道AVL树适合用于插入与删除次数比较少,但查找多的情况。: